Practical examples of Concepts of Neural Networks

汇报人:思博

Group 20

11 月24日

神经网络概念的实用示例

Purpose

Try to understand some notions of concepts leveraging graphical tools and interactions. 

Content

  • 1 neuron and problems that solve
    • Activation Function
    • 2 groups
    • XOR
  • 1 layer and problems that solve
    • Features
  • Train & Test data
  • Learning Rate
  • Underfiting & Overfiting
  • Regularization
  • Real Data

Classification Problem (simplification)

1 variable

2 variable

2 categories

Activation function (purpose)

Lineal classification superposition create lineal results

This is the necessity to use "another element" in the architecture

Activation function (3D)

Activation function (3D)

1 Neuron (perceptron)

1 var, 2 vars, XOR

1 Variable

2 Variables 

XOR Distribution (no linearly separable)

1 layer

features 

More complex example (lineal)

More complex example (+f quadratic)

More complex example (+f trigonometric)

network

Underfitting, Overfitting, learning rate

Learning rate

Learning rate

The ability to deal with overfitting is what separates professionals and amateurs in machine learning.

处理过拟合的能力是区分机器学习专业人员和业余爱好者的关键所在

Underfitting

Underfitting

Overfitting

Regularization L1 & L2

Real Data

Thanks 谢谢